
0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E 	 March/April 2008 I E E E S o f t w a r E 	 25

focusqual i t y r e qu ir em en t s

Making Practical Use
of Quality Attribute
Information

Ipek Ozkaya, Len Bass, and Robert L. Nord, Software Engineering Institute

Raghvinder S. Sangwan, Pennsylvania State University

Gathering and
applying quality
attribute information
can be difficult,
particularly
communicating with
stakeholders about
quality attribute
requirements
and incorporating
those requirements
into existing analysis
and design methods.

Q
uality attribute requirements are important both for customer and end-user sat-
isfaction and for driving software system design. Yet asserting their importance
raises many other questions. In particular, using quality attribute information
in practice isn’t obvious. Here, we consider two aspects of using such informa-

tion: communicating with stakeholders about quality attributes and incorporating quality
attribute requirements into existing analysis and design methods.

Many taxonomies and definitions of quality
attributes exist. Perhaps the best known is ISO
9126, which defines 22 quality attributes and sub-
attributes (which we call quality attribute con-
cerns).1 The practical questions regarding ISO
9126 are to what extent practitioners use its ter-
minology and to what extent its quality attributes
cover the qualities that concern practitioners. Data
from several architectural evaluations conducted
using the Software Engineering Institute’s (SEI)
Architecture Trade-off Analysis Method (ATAM)
shows that practitioners don’t use consistent ter-
minology and that relevant taxonomies don’t
cover all of their concerns. To resolve terminologi-
cal ambiguities, we use quality attribute scenarios
to capture the stakeholders’ precise concerns. This
lets us supplement the terms various stakeholders
use with a specification that’s independent of qual-
ity attribute definitions and taxonomies.

Practitioners are insatiable. Tell them to use
quality attribute scenarios to specify quality attri-
bute requirements, and they want sufficient guid-
ance on how to elicit these requirements that com-

plies with their development methodology. Give
them that guidance, and they want to integrate
the output—important quality attribute require-
ments—with their design method. So, we de-
scribe how practitioners can integrate quality at-
tribute scenarios and SEI’s Attribute Driven Design
(ADD)2 with Object-Oriented Analysis and Design
(OOAD)3 to produce a design that supports both
functional and quality attribute concerns.

The problem with existing
approaches

Researchers and practitioners recognize the
importance of eliciting quality requirements from
different stakeholders’ perspectives, including the
system, organization, and the end-user stakehold-
ers.4 However, most mainstream software design
methodologies5 don’t clearly articulate how to
represent, elicit, and use quality requirements to
create a software architecture. OOAD has taken
center stage since the early 1980s, and almost all
programming languages developed since the 1990s
have object-oriented features.5 OOAD begins with

26	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

use cases and primarily uses functional decompo-
sition to drive the system’s architecture. (The run-
ning example we used in this article to demon-
strate the use of OOAD and architecture-centric
methods is based on the Global Studio Project [see
the sidebar].6 You can find a survey of other design
methods elsewhere.7)

Consider a company that builds hardware-based
field systems for controlling a building’s internal
functions, such as heating, ventilation, air condi-
tioning, access, and safety. Hardware’s commoditi-
zation has led to shrinking profit margins. To im-
prove the margins, the company wants to develop a
software system to automatically monitor and con-
trol the building’s internal functions. The system
users would be facilities managers, and the system
would broadly perform the following functions:

Manage a network of hardware-based field sys-
tems used for controlling building functions.
Issue commands to configure the field systems.
Define rules on the basis of property values of

■

■

■

field systems that trigger reactions and issue
commands to reset these property values.
Trigger alarms notifying appropriate users of
life-critical situations.

 The company wants to offer this product in
new and emerging geographic markets and expand
its sales channels by letting value-added resellers sell
the software system under their own brands. The
resellers would support field systems from manu-
facturers they choose.

Figure 1 illustrates the various artifacts an
OOAD application would produce if it were used
to develop this product.8 The use cases broadly
explain the functionality the product must sup-
port (figure 1a). Figure 1b shows the building au-
tomation problem’s domain model, illustrating the
important business entities that the use cases ma-
nipulate while they execute. Because the use cases
capture the interaction of external entities at a
system’s boundary, they help define the system in-
terfaces (figure 1c). These business entities define
business interfaces (figure 1d) that they must pro-
vide to the use cases. Typically, the architect creates
a system interface for every use case and a business
interface for every core business entity, shown with
a <<core>> stereotype in the UML model. (A core
business entity is one with no mandatory associa-
tion.8) The architect groups semantically coherent
system interfaces, which become the responsibility
of a single system component (figure 1e), whereas
a business component is created for each core busi-
ness entity (figure 1f). Together, figures 1e and 1f
define the system’s architecture.

This approach is use-case driven with little focus
on the quality attributes. For instance, this archi-
tecture doesn’t explicitly accommodate the quality
attribute requirements associated with supporting
new and emerging geographic markets and differ-
ent value-added resellers. These requirements call
for modifiability concerns such as adding a new
field system or supporting a new language. How-
ever, without further refining the architecture (for
example, introducing adaptors and factories), mak-
ing such changes later in the development life cycle
would be costly.

To some extent, the Rational Unified Process
overcomes OOAD’s lack of focus on quality attri-
butes. RUP, a software development process widely
used with OOAD,9 divides the software develop-
ment life cycle into four phases—inception, elabo-
ration, construction, and transition. During the
elaboration phase, the architect creates a baseline
executable architecture by focusing on architectur-
ally significant use cases chosen on the basis of risk,

■

The Global Studio Project
This multiyear project sponsored by Siemens Corporate Research involved

seven teams of 30 developers in five countries, across four continents and 11
time zones. In its first year, the project used Object-Oriented Analysis and
Design; most use cases were enumerated and packaged into functionally co-
hesive groups. The packages were then distributed among the teams for fur-
ther design and development. Because the use cases weren’t fully elaborated,
the teams didn’t fully understand the dependencies among the various pack-
ages. As the design emerged and teams began to discover dependencies, ad
hoc communication ensued between teams whose work depended on each
other. New dependencies arose such that one team required a partial defini-
tion of another team’s object model, sometimes at a later date. Teams didn’t
adequately investigate task dependencies that arose from systemic properties
such as memory footprint and performance budgets, leading to duplicated
work effort, conflicting solutions from other teams, and integration problems
requiring rework. Coordinating and controlling work products across depen-
dent teams became challenging, and certain teams faced design and devel-
opment tasks that weren’t commensurate with their skill set.

The project was undertaken from scratch in its second year using architec-
ture-centric methods. It involved a more upfront effort focused primarily on
systemic quality attributes improving the general understanding of depen-
dencies across components that went beyond functional dependencies. As
illustrated in figure 3 in the main article, the system’s structure was primarily
driven by quality attributes. The top-level system was initially assigned re-
sponsibilities embodied in the use cases. As the top-level system was decom-
posed, its responsibilities were distributed across newly created components.
This gave a better understanding of dependencies (both functional and sys-
temic) across components, which were then considered when distributing the
work across teams, resulting in significantly improved coordination and con-
trol of work products across dependent teams.

	 March/April 2008 I E E E S o f t w a r E 	 27

(a)

(c)

(e)

(b)

Define alarm

Define
standard operating

procedure

Follow SOP

Handle alarm

Generate alarm

Issue command

Notify change
of value

<<include>>

<<include>>

<<include>>Facilities
manager

Field
system

Define
automation rule

System

executed by

Standard
operating
procedure

Rule

Facilities person

Operator

acknowledges

configured by

Alarm

defineshandles

issues

1
1

*

*

*
generated by

generated by
0..1

*

* *

*

**

Command

issues
1

*

1

Field device

1

containsField system

1 *

1*

Define
automation rule IDefineAutomationRule

Notify change
of value INotifyChangeOfValue

Define alarm
IDefineAlarm

Define standard
operating
procedure

IDefineSOP

Handle alarm
IHandleAlarm

Issue command
IIssueCommand

Follow standard
operating
procedure

IFollowSOP

Generate alarm
IGenerateAlarm

IDefineAutomationRule

(d)

executed by

<<core>>
Rule

Facilities person

<<core>>
Operator

configured by

<<core>>
Alarm

defines
handles 1

*

*

*

generated by

generated by
0..1

*

* *

**
Command

issues
1

*
Field
device 1

contains
<<core>>

Field
system 1 *

1*

IOperatorMgmt

IRuleMgmt

ISOPMgmt

IAlarmMgmt

IFieldSystemMgmt

IRuleMgmt

INotifyChangeOfValue

IDefineAlarm

IDefineSOP

IHandleAlarm

IIssueCommand

IFollowSOP

IGenerateAlarm

RulesSystem
IRuleMgmt

RuleMgr

IFieldSystemMgmt
FieldSystemMgr

ISOPMgmt

IAlarmMgmt

IOperatorMgmt
OperatorMgr

IFieldSystemMgmt

CommandProcessor

ISOPMgmt

IAlarmMgmt

AlarmSystem

IOperatorMgmt (f)

MonitoringSystem

<<core>>
Standard
operating
procedure

AlarmMgr

SOPMgr

Figure 1. Object-oriented analysis and design artifacts showing (a) use cases, (b) the business domain model,
(c) system interfaces, (d) business interfaces, (e) system components, and (f) business components. (The figure
uses UML notation.)

28	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

criticality, and coverage.3,9 A use case is architec-
turally significant if it

poses technical risks such as resource conten-
tion or performance;
is business critical, capturing the system’s es-
sence; or
exercises most of the system.

Although the business-critical use cases might
be clear at the beginning of elaboration, identify-
ing those that pose a technical risk or that exer-
cise most of the system can be difficult. Not all use
cases are fully understood until the end of elabora-
tion, and the system exists only as an evolutionary
prototype.

Because it might be hard to express certain qual-
ity attribute requirements as use cases, RUP also
maintains a supplementary specification document
for such requirements. In addition to the architec-
turally significant use cases, this document’s qual-
ity attribute requirements also guide the architec-
tural efforts. In practice, RUP offers no guidance

■

■

■

on representing quality attribute requirements. The
supplementary specification document can become
unwieldy, acting as a sink for every conceivable
quality attribute requirement that might apply to
the system under consideration.

Discussing quality concerns
with stakeholders

The SEI has been using quality attribute scenar-
ios in their architecture-centric methods to better
elicit and represent quality attribute requirements
observed in practice. A quality attribute scenario
is a quality attribute specific requirement with six
parts: the stimulus, its source, the environment, the
artifact, the response, and the response measure.2
It provides an operational definition for a quality
attribute. For example, it’s meaningless to say that
a system is modifiable. Every system is modifiable
with respect to one set of changes and not modifi-
able with respect to another. It’s more meaningful
to cast the requirement as a scenario, such as

A developer wishes to add an input field to
the UI code at design time; modification is
made with no side effect in three hours.

These scenarios can help structure the supplemen-
tal requirements of a system under development us-
ing OOAD.

During one step of the ATAM,2 the evaluators
ask the system’s stakeholders to construct a utility
tree. The utility tree has as its leaves a collection of
quality attribute scenarios. However, what’s more
relevant for this discussion is that its second and
third levels are, respectively, a collection of quality
attributes and their concerns (subattributes in the
usage of ISO 9126). During the ATAM evaluation,
the stakeholders are encouraged to use their own
language for quality attributes. Thus, the utility
trees that SEI collected during ATAM evaluations
became a good resource for studying the language
stakeholders used to describe quality attributes.

We examined the utility tree data from 24 dif-
ferent SEI-led evaluations from 1999 to 2007.
These evaluations, conducted for commercial and
government organizations, range from avionics to
transportation to combat systems. The data has
1,072 scenarios in total. We looked at trends in the
quality attributes and quality attribute concerns,
looking for matches and mismatches between
stakeholders’ language, the quality attributes that
concern them, and the existing guidance for col-
lecting and specifying quality attributes.

Table 1 shows the 20 most common quality
attributes (out of 49 attributes) in our data. The

Table 1
The most common quality attributes

according to the SEI-led ATAM evaluations.
Quality attribute Distribution (%)

Modifiability 14.1

Performance 13.6

Usability 11.4

Maintainability 8.5

Interoperability 7.8

Security 7.3

Configurability 6.9

Availability 6.8

Reliability 5.7

Scalability 3.2

Testability 2.6

Affordability 2.0

Reusability 1.9

Integrability 1.9

Safety 1.1

User data management 1.0

Portability 0.8

Assurance 0.8

Product line 0.8

Net-centric operation 0.5

	 March/April 2008 I E E E S o f t w a r E 	 29

distribution percentage represents the number of
times the concept is expressed as a top-level quality
attribute, divided by the total number of scenarios.
To understand the true nature of stakeholder con-
cerns, we also aggregated the quality attribute sce-
narios by their specified quality attribute concern
level as opposed to the quality attributes reported
in table 1. Each quality attribute in our data has
between two and about a dozen concerns. Table 2
lists the top 20 out of 140 concerns.

Many of the top 20 quality attributes or con-
cerns don’t appear in the same fashion in common
taxonomies. For example, ISO 9126 defines secu-
rity as a subattribute of functionality: “The capabil-
ity of the software product to protect information
and data so that unauthorized persons or systems
cannot read or modify them and authorized per-
sons or systems are not denied access to them.”
This is clearly a functional concern. However, other
security concerns must also be captured for require-
ments to provide clear guidance for design. In our
data, security is a top-level quality attribute with 16
concerns or subattributes (see table 3). Although au-
thentication and access control (as described in ISO
9126) made up 27 percent of the quality attribute
concerns in our data, there were several other con-
cerns such as data integrity and malicious code. We
observe similar differences with the Furps+ scheme
as well.10 (Furps+ stands for functionality, usability,
reliability, performance, and supportability, and the
+ indicates other possible attributes.)

Without the corresponding quality attribute sce-
narios, ambiguities are inevitable, and these catego-
ries can easily become misleading, especially when
communicating with stakeholders. As the “Dia-
logue with a Stakeholder” sidebar demonstrates,
stakeholders have their own meaning for quality
attribute concerns such as flexibility. Although the
sidebar is anecdotal, it is representative of our data.
In our data, flexibility is a concern of several quality
attributes—namely interoperability, configurability,
and extensibility. To infer the quality concern un-
der such circumstances, you must examine the sce-
nario. About half of these flexibility scenarios refer
to changing the software, and the rest refer to the
software’s ability to cover several usage conditions.
However, we collected these ambiguous classifica-
tions from stakeholders during ATAM evaluations.
Our data doesn’t distinguish between stakeholders
who have investigated various standardized taxon-
omies and those who haven’t.

We observed that stakeholders’ descriptions of
quality attributes didn’t follow any pattern relative
to various standard descriptions of quality attri-
butes. When specifying quality attributes, it’s bet-

ter to elicit the concern supported by the quality
attribute scenario description than to go down a
list of classifications, which might not cover all
quality issues.

Building quality
into software projects

Returning to the example of the company that
wants to build a software system to monitor a
building’s internal functions, you might note that
the forces that most significantly impact its archi-
tecture are its business goals. The company also
would have to consider different geographic mar-
kets’ languages, cultures, and regulations, and they
would have to integrate field systems from different
manufacturers into the product to meet the value-
added resellers’ needs. The company would have to
make trade-offs and perhaps scale back if they can’t
afford the business goals’ inherent risks. (We use
the term business goals differently from its use in
the business modeling context.) You can use busi-

Table 2
The most common quality attribute concerns
according to the SEI-led ATAM evaluations

Quality attribute Quality attribute concern Distribution (%)

Modifiability New/revised functionality/components 6.4

Usability Operability 4.1

Modifiability Upgrade/add hardware components 3.9

Performance Performance response time/deadline 3.6

Performance Performance latency 3.2

Modifiability Portable to other platforms 3.1

Interoperability Operate intraservice (for example,
ship-to-ship)

2.8

Usability Usability ease of operation: can do within
a time limit

2.7

Performance Throughput 2.1

Performance Resource utilization 1.9

Availability Failure recovery/containment 1.9

Configurability Flexibility (range of operation scenarios) 1.7

Availability Graceful degradation 1.6

Interoperability Compliance to standards/protocols 1.5

Affordability Affordability of various decisions 1.5

Modifiability Replace COTS 1.4

Performance Real time 1.4

Availability Fault tolerance 1.3

Configurability Discovery (new configuration) 1.3

Security Authentication 1.3

30	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

ness modeling to engineer new business processes
or reengineer existing ones. Recent extensions to
the RUP provide support for business modeling.11

SEI’s architecture-centric methods use business
goals to elicit their associated quality attribute sce-
narios, which ADD then uses to create a software

architecture. Stakeholders provide key input when
eliciting quality attribute scenarios, but not all
stakeholders participate in architecting the system.
Table 4 shows the business goals and subgoals and
their associated quality attributes, which the stake-
holders use to elicit quality attribute requirements
for the building automation system.

Often, fewer than a dozen architecturally signif-
icant requirements drive or shape the architecture2
as opposed to the hundreds of functional require-
ments. So, when it comes to understanding qual-
ity attributes, coverage is most critical. Organizing
quality attribute scenarios into a utility tree pro-
vides significant coverage of the quality attribute
requirements in a short amount of time. Figure 2
shows a portion of the utility tree for the build-
ing-automation system that systematically fleshes
out the modifiability and performance quality at-
tributes into concrete quality attribute scenarios.
The quality attribute concerns trace back to table
4’s business subgoals.

The ADD approach to defining software ar-
chitecture bases the design process on the system’s
quality attribute requirements. ADD helps design-
ers understand quality attribute trade-offs early in
the design process. The method takes the scenarios
(such as those in figure 2) and prioritizes them be-
fore the design process can begin. In the prioritiza-
tion tuple next to the quality attribute scenario, the
letters represent priorities that are high, medium,
or low. The tuple’s first letter is the priority that the
business stakeholders generated to represent the
quality attribute’s business value. The second letter
is the priority that the technical stakeholders gener-
ated to represent the effort required to achieve the
quality attribute. For instance, (H, H) means that
the quality attribute has high business value and
would require considerable effort to achieve. ADD
considers the quality attributes in the following or-
der: (H, H), (H, M), (H, L), (M, H), (M, M), (M,
L), (L, H), (L, M), and (L, L). So, the final architec-
ture created through such a process also reflects this
priority order. Notice the distinction between the
architecture in figure 3 and the one derived from an
OOAD application in figures 1e and 1f.

ADD starts with the top-level system (figure 3a)
and decomposes it into components (figure 3b–
3d), applying architectural tactics2 corresponding
to the quality attributes. Relevant tactics are ap-
plied based on the priorities shown in the utility
tree in figure 2.

Figure 3b shows the application of the modifi-
ability tactics to limit the impact of change and
minimize the number of dependencies on the sys-
tem responsible for integrating new field systems.

Table 3

The distribution of security-related
quality attribute concerns according

to the SEI-led ATAM evaluations
Quality attribute concern Distribution (%)

Authentication 16.9

Multilevel security 13.0

Access control 10.4

Ability to change security policy 9.1

Data integrity 6.5

Intrusion detection 6.5

Confidentiality 5.2

Data identification 5.2

Data protection 5.2

Blocking 5.2

Sanitization 5.2

Accountability 3.9

Service disruption 2.6

Malicious code 2.6

Denial of service 1.3

Migration of security in later release 1.3

Table 4
Business goals used

for eliciting quality attribute scenarios
Business goal Goal refinement Quality attribute

Expand sales channels
through value-added
resellers

Support field systems from
different manufacturers

Modifiability

Support conversions of
nonstandard units used by
the different field systems

Modifiability

Enter new and emerging
geographic markets

Support several international
languages

Modifiability

Support regulations that require
life-critical systems, such as fire
alarms, to operate within specific
latency constraints

Performance

	 March/April 2008 I E E E S o f t w a r E 	 31

We introduce an adapter for each field system
(anticipation of changes tactic) with each adapter
exposing a standard interface (maintain existing
interface tactic). We also introduce a virtual field
system to further limit the ripple effect when re-
moving or adding field systems (introducing an in-
termediary tactic).

Figure 3c illustrates the application of the per-
formance tactic (concurrency) to support criti-
cal systems so they operate within specific latency
constraints. We separate the parts responsible for
evaluating rules and generating alarms for life-
threatening situations into logic-and-reaction and
alarm modules. We can then move these modules to
a dedicated execution node, which reduces latency,
and can further enhance its performance by intro-
ducing multithreading in these modules.

Figure 3d shows the application of the modifi-
ability tactic (anticipation of changes). We create a
separate presentation module to support several in-
ternational languages.

The only scenario from figure 2 that we don’t
appear to address is the one dealing with converting
nonstandard units that various devices use. We use
the adapters in figure 3b to do the conversions into
standard units (introducing an intermediary tactic).

B usiness goals and their associated quality
attribute requirements strongly influence
a system’s architecture. However, elicit-

ing and representing the quality attribute informa-
tion hasn’t yet become a routine part of practice.
Although taxonomies are helpful, without quality
attribute scenarios it’s often impossible to infer a
quality attribute’s essence, especially where a qual-
ity attribute scenario covers multiple quality attri-
butes. Integrating architecture-centric methods,
such as ADD, into mainstream software develop-
ment methodologies produces significant bene-
fits.12,13 Although it’s not yet routine, some orga-
nizations are taking steps forward. Organizations
such as Pitney Bowes have defined company-spe-
cific usage of quality attributes and their concerns,
resulting in less confusion about the meaning of
quality attribute descriptions among the stake-
holders.14 Furthermore, Ericsson, Sandia National
Laboratories, and Samsung SDS have effectively
incorporated quality attribute information into ex-
isting methods.15

References
 1. IS0 9126-1 Information Technology—Software

Product Evaluation—Quality Characteristics and

Dialogue with a Stakeholder
Evaluator: What are some of your main concerns for the system being

evaluated?
Stakeholder: We have to provide flexibility.
Evaluator: What do you mean by “flexibility”?
Stakeholder: Well, flexibility has two thrust areas for our product, one

from the user perspective and one from the system perspective.
Evaluator: Are they related?
Stakeholder: Yes and no.
Evaluator: Please give an example from both the user perspective and the

system perspective where the system should address flexibility concerns.
Stakeholder: When we talk about flexibility from the user’s viewpoint, the

users should be able to do everything that they used to do before this sys-
tem was deployed, either using the new screen layout or switching to the old
screen layout.

Evaluator: Is it reasonable to say that, from the end users’ perspective, you
would like the user interfaces to be customizable, allowing switching to earlier
versions?

Stakeholder: Absolutely.
Evaluator: How about system flexibility?
Stakeholder: The system shouldn’t constrain the data flow. If a particu-

lar flow of information doesn’t work well, we should be able to create a new
process.

Evaluator: So, the system shouldn’t provide one predetermined process but
should let you create new processes or modify existing processes.

Stakeholder: Exactly. We would like the system to be flexible rather than
constraining.

Utility

Performance

Modifiability

New field
system

Nonstandard
unit conversion

(H, H)

(H, M)

(H, M)

Two developers are able
to integrate a new field
system into the system in
320 person hours

A system administrator
configures the system to
handle the unite from a
newly plugged in field
system in less than 3 hours

A developer is able to
package a version of the
system with new language
support in 80 person hours

A life-critical alarm should
be reported to the concerned
users within 3 seconds
of the occurrence of the
event that generated the alarm

New language
support

Response time
(H, H)

Figure 2. Utility tree for the building automation system. The letters
represent high, medium, or low priorities for the business and
technical stakeholders, respectively.

32	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

Guidelines for Their Use, Int’l Organization for Stan-
dardization, 2001.

 2. L. Bass, P. Clements, and R. Kazman, Software Archi-
tecture in Practice, 2nd ed., Addison-Wesley, 2003.

 3. C. Larman, Applying UML and Patterns: An Introduc-
tion to Object-Oriented Analysis and Design and
Iterative Development, 3rd ed., Prentice Hall, 2004.

 4. K. Wiegers, Software Requirements, 2nd ed., Microsoft
Press, 2003.

 5. D. Budgen, Software Design, Addison-Wesley, 2003.

 6. N. Mullick et al., “Siemens Global Studio Project: Ex-
periences Adopting an Integrated GSD Infrastructure,”
Proc. IEEE Int’l Conf. Global Software Eng. (Icgse
06), IEEE Press, 2006, pp. 203–212.

 7. C. Hofmeister et al., “A General Model of Software
Architecture Design Derived from Five Industrial
Approaches,” J. Systems and Software, vol. 80, no. 1,
2007, pp. 106–126.

 8. J. Cheesman and J. Daniels, UML Components: A
Simple Process for Specifying Component-Based Soft-
ware, Addison-Wesley, 2001.

 9. P. Kroll and P. Kruchten, The Rational Unified Process
Made Easy: A Practitioner’s Guide to the RUP, Ad-
dison-Wesley, 2003.

 10. P. Eeles, “Capturing Architectural Requirements,”
IBM DeveloperWorks, 15 Nov. 2005, www-128.ibm.
com/developerworks/rational/library/4706.html.

 11. H. Eriksson and M. Penker, Business Modeling with

Automation server

Virtual field system

Adapter manager

(a)

Logic and
reaction

L&
R

 ru
le

s

Co
m

m
an

ds

Ev
en

ts

Alarm

Al
ar

m
 ru

le
s

Ev
en

ts

Co
m

m
an

ds

Al
ar

m
 d

at
a

Automation
Server

Field system

R
ea

d
pr

op
er

tie
s

Co
m

m
an

ds

Ev
en

ts

(b)

Adapter1 Adaptern

...

...

R
ea

d
pr

op
er

tie
s

Co
m

m
an

ds

Ev
en

ts

...

Automation server

Virtual field system

(c)
Field system

...

R
ea

d
pr

op
er

tie
s

Co
m

m
an

ds

Ev
en

ts

Alarm data

L&R data

N
ot

ifi
ca

tio
n

Logic and
reaction

L&
R

 ru
le

s

Co
m

m
an

ds

Ev
en

ts

Alarm

Al
ar

m
 ru

le
s

Ev
en

ts

Co
m

m
an

ds

Automation server

Virtual field system

(d)
Field system

External system

Component

System boundary

Call-Return
(X calls Y)

Components

Connectors

...

R
ea

d
pr

op
er

tie
s

Co
m

m
an

ds

Ev
en

ts
Presentation

Al
ar

m
ha

nd
in

g

Ev
en

ts

Notification

Co
m

m
an

ds

Field system
R

ea
d

pr
op

er
tie

s

Co
m

m
an

ds

Ev
en

ts

X Y

Figure 3. Attribute-
driven design showing
(a) the top-level system
as a starting point
and its decomposition
through applying
tactics to support
(b) adding new field
systems, (c) latency
constraints, and
(d) internationalization.

	 March/April 2008 I E E E S o f t w a r E 	 33

UML: Business Patterns at Work, OMG Press, 2000.

 12. R. Kazman et al., Integrating Software Architecture-
Centric Methods into the Rational Unified Process,
tech. report CMU/SEI-2004-TR-011, SEI, Carnegie
Mellon Univ., 2004.

 13. R.L. Nord and J.E. Tomayko, “Software Architec-
ture-Centric Methods and Agile Development,” IEEE
Software, vol. 23, no. 2, 2006, pp. 47–53.

 14. R.L. Nord et al., Proc. 1st Software Architecture Tech-
nology User Network (Saturn) Workshop, tech. note
CMU/SEI-2005-TN-037, SEI, Carnegie Mellon Univ.,
2005.

 15. Proc. 3rd SEI Software Architecture Technology User
Network Workshop (Saturn 07), SEI, Carnegie Mellon
Univ., 2007, www.sei.cmu.edu/architecture/saturn/
2007/tech_program.html.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
Ipek Ozkaya is a senior member of the technical staff in the Product Line Systems
Program at the Software Engineering Institute at Carnegie Mellon University, where she
works in the Software Architecture Technology initiative. Her research interests include
developing methods for improving software architecture practices focusing on software
economics and requirements management. She received her PhD in computational design
from Carnegie Mellon University. Contact her at 4500 Fifth Ave., Pittsburgh, PA 15213;
ozkaya@sei.cmu.edu.

Len Bass is a senior member of the technical staff in the Product Line Systems Program
at the Software Engineering Institute at Carnegie Mellon University. His research interests
include techniques for methodically designing software architectures, better supporting us-
ability through software architecture, and understanding the relationship between software
architecture and global software development practices. He received his PhD in computer
science from Purdue University. He coauthored Documenting Software Architecture: Views
and Beyond (Addison-Wesley, 2002) and Software Architecture in Practice (Addison-Wesley,
2000). Contact him at 4500 Fifth Ave., Pittsburgh, PA 15213; ljb@sei.cmu.edu.

Raghvinder S. Sangwan is an assistant professor of information science in
Pennsylvania State University’s Great Valley School of Graduate Professional Studies. His
teaching and research involve analysis, design, and development of software systems and
their architecture, as well as automatic and semiautomatic approaches to assessing their
design and code quality. He received his PhD in computer and information sciences from
Temple University. Contact him at 30 E. Swedesford Rd., Malvern, PA 19355; rsangwan@
psu.edu.

Robert L. Nord is a senior member of the technical staff in the Product Line Systems Program at the Software
Engineering Institute at Carnegie Mellon University. His work involves developing and communicating effective soft-
ware architecture methods and practices. He received his PhD in computer science from Carnegie Mellon University.
He coauthored Documenting Software Architecture: Views and Beyond (Addison-Wesley, 2002) and Applied Software
Architecture (Addison-Wesley, 2000). He’s a member of the ACM and IFIP Working Group 2.10 Software Architecture.
Contact him at 4500 Fifth Avenue, Pittsburgh, PA 15213: rn@sei.cmu.edu.

EXECUTIVE COMMITTEE

President: Rangachar Kasturi*
President-Elect: Susan K. (Kathy) Land;* Past President:

Michael R. Williams;* VP, Electronic Products & Ser-
vices: George V. Cybenko (1ST VP);* Secretary: Michel
Israel (2ND VP);* VP, Chapters Activities: Antonio
Doria;† VP, Educational Activities: Stephen B. Seid-
man;† VP, Publications: Sorel Reisman;† VP, Stan-
dards Activities: John W. Walz;† VP, Technical & Con-
ference Activities: Joseph R. Bumblis;† Treasurer:
Donald F. Shafer;* 2008–2009 IEEE Division V Direc-
tor: Deborah M. Cooper;† 2007–2008 IEEE Division
VIII Director: Thomas W. Williams;† 2008 IEEE Divi-
sion VIII Director-Elect: Stephen L. Diamond;† Com-
puter Editor in Chief: Carl K. Chang†

* voting member of the Board of Governors
† nonvoting member of the Board of Governors

BOARD OF GOVERNORS

Term Expiring 2008: Richard H. Eckhouse, James D. Isaak,
James W. Moore, Gary McGraw, Robert H. Sloan,
Makoto Takizawa, Stephanie M. White

Term Expiring 2009: Van L. Eden, Robert Dupuis, Frank E.
Ferrante, Roger U. Fujii, Ann Q. Gates, Juan E. Gilbert,
Don F. Shafer

Term Expiring 2010: André Ivanov, Phillip A. Laplante,
Itaru Mimura, Jon G. Rokne, Christina M. Schober, Ann
E.K. Sobel, Jeffrey M. Voas

Next Board Meeting:
16 May 2008, Las Vegas, NV, USA

EXECUTIVE STAFF

Executive Director: Angela R. Burgess; Associate Execu-
tive Director: Anne Marie Kelly; Associate Publisher:
Dick Price; Director, Administration: Violet S. Doan;
Director, Finance & Accounting: John Miller

COMPUTER SOCIETY OFFICES
Washington Office. 1828 L St. N.W., Suite 1202, Washington,

D.C. 20036-5104
Phone: +1 202 371 0101 • Fax: +1 202 728 9614
Email: hq.ofc@computer.org

Los Alamitos Office. 10662 Los Vaqueros Circle, Los
Alamitos, CA 90720-1314
Phone: +1 714 821 8380 • Email: help@computer.org
Membership & Publication Orders:
Phone: +1 800 272 6657 • Fax: +1 714 821 4641
Email: help@computer.org

Asia/Pacific Office. Watanabe Building, 1-4-2 Minami-
Aoyama, Minato-ku, Tokyo 107-0062, Japan
Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553
Email: tokyo.ofc@computer.org

IEEE OFFICERS

President: Lewis M. Terman; President-Elect: John R. Vig;
Past President: Leah H. Jamieson; Executive Director
& COO: Jeffry W. Raynes; Secretary: Barry L. Shoop;
Treasurer: David G. Green; VP, Educational Activities:
Evangelia Micheli-Tzanakou; VP, Publication Services &
Products: John Baillieul; VP, Membership &
Geographic Activities: Joseph V. Lillie; VP, Standards
Association Board of Governors: George W. Arnold;
VP, Technical Activities: J. Roberto B. deMarca; IEEE
Division V Director: Deborah M. Cooper; IEEE Division
VIII Director: Thomas W. Williams; President, IEEE-
USA: Russell J. Lefevre

PURPOSE: The IEEE Computer Society is the
world’s largest association of computing
professionals and is the leading provider of
technical information in the field. Visit our
Web site at www.computer.org.

revised 15 Jan. 2008

