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Gathering and 
applying quality 
attribute information 
can be difficult, 
particularly 
communicating with 
stakeholders about 
quality attribute 
requirements  
and incorporating 
those requirements 
into existing analysis 
and design methods.

Q
uality attribute requirements are important both for customer and end-user sat-
isfaction and for driving software system design. Yet asserting their importance 
raises many other questions. In particular, using quality attribute information 
in practice isn’t obvious. Here, we consider two aspects of using such informa-

tion: communicating with stakeholders about quality attributes and incorporating quality 
attribute requirements into existing analysis and design methods.

Many taxonomies and definitions of quality 
attributes exist. Perhaps the best known is ISO 
9126, which defines 22 quality attributes and sub-
attributes (which we call quality attribute con-
cerns).1 The practical questions regarding ISO 
9126 are to what extent practitioners use its ter-
minology and to what extent its quality attributes 
cover the qualities that concern practitioners. Data 
from several architectural evaluations conducted 
using the Software Engineering Institute’s (SEI) 
Architecture Trade-off Analysis Method (ATAM) 
shows that practitioners don’t use consistent ter-
minology and that relevant taxonomies don’t 
cover all of their concerns. To resolve terminologi-
cal ambiguities, we use quality attribute scenarios 
to capture the stakeholders’ precise concerns. This 
lets us supplement the terms various stakeholders 
use with a specification that’s independent of qual-
ity attribute definitions and taxonomies.

Practitioners are insatiable. Tell them to use 
quality attribute scenarios to specify quality attri-
bute requirements, and they want sufficient guid-
ance on how to elicit these requirements that com-

plies with their development methodology. Give 
them that guidance, and they want to integrate 
the output—important quality attribute require-
ments—with their design method. So, we de-
scribe how practitioners can integrate quality at-
tribute scenarios and SEI’s Attribute Driven Design 
(ADD)2 with Object-Oriented Analysis and Design 
(OOAD)3 to produce a design that supports both 
functional and quality attribute concerns. 

The problem with existing 
approaches

Researchers and practitioners recognize the 
importance of eliciting quality requirements from 
different stakeholders’ perspectives, including the 
system, organization, and the end-user stakehold-
ers.4 However, most mainstream software design 
methodologies5 don’t clearly articulate how to 
represent, elicit, and use quality requirements to 
create a software architecture. OOAD has taken 
center stage since the early 1980s, and almost all 
programming languages developed since the 1990s 
have object-oriented features.5 OOAD begins with 
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use cases and primarily uses functional decompo-
sition to drive the system’s architecture. (The run-
ning example we used in this article to demon-
strate the use of OOAD and architecture-centric 
methods is based on the Global Studio Project [see 
the sidebar].6 You can find a survey of other design 
methods elsewhere.7)

Consider a company that builds hardware-based 
field systems for controlling a building’s internal 
functions, such as heating, ventilation, air condi-
tioning, access, and safety. Hardware’s commoditi-
zation has led to shrinking profit margins. To im-
prove the margins, the company wants to develop a 
software system to automatically monitor and con-
trol the building’s internal functions. The system 
users would be facilities managers, and the system 
would broadly perform the following functions:

Manage a network of hardware-based field sys-
tems used for controlling building functions.
Issue commands to configure the field systems.
Define rules on the basis of property values of 

■

■

■

field systems that trigger reactions and issue 
commands to reset these property values.
Trigger alarms notifying appropriate users of 
life-critical situations.

 The company wants to offer this product in 
new and emerging geographic markets and expand 
its sales channels by letting value-added resellers sell 
the software system under their own brands. The 
resellers would support field systems from manu-
facturers they choose.

Figure 1 illustrates the various artifacts an 
OOAD application would produce if it were used 
to develop this product.8 The use cases broadly 
explain the functionality the product must sup-
port (figure 1a). Figure 1b shows the building au-
tomation problem’s domain model, illustrating the 
important business entities that the use cases ma-
nipulate while they execute. Because the use cases 
capture the interaction of external entities at a 
system’s boundary, they help define the system in-
terfaces (figure 1c). These business entities define 
business interfaces (figure 1d) that they must pro-
vide to the use cases. Typically, the architect creates 
a system interface for every use case and a business 
interface for every core business entity, shown with 
a <<core>> stereotype in the UML model. (A core 
business entity is one with no mandatory associa-
tion.8) The architect groups semantically coherent 
system interfaces, which become the responsibility 
of a single system component (figure 1e), whereas 
a business component is created for each core busi-
ness entity (figure 1f). Together, figures 1e and 1f 
define the system’s architecture.

This approach is use-case driven with little focus 
on the quality attributes. For instance, this archi-
tecture doesn’t explicitly accommodate the quality 
attribute requirements associated with supporting 
new and emerging geographic markets and differ-
ent value-added resellers. These requirements call 
for modifiability concerns such as adding a new 
field system or supporting a new language. How-
ever, without further refining the architecture (for 
example, introducing adaptors and factories), mak-
ing such changes later in the development life cycle 
would be costly.

To some extent, the Rational Unified Process 
overcomes OOAD’s lack of focus on quality attri-
butes. RUP, a software development process widely 
used with OOAD,9 divides the software develop-
ment life cycle into four phases—inception, elabo-
ration, construction, and transition. During the 
elaboration phase, the architect creates a baseline 
executable architecture by focusing on architectur-
ally significant use cases chosen on the basis of risk, 

■

The Global Studio Project
This multiyear project sponsored by Siemens Corporate Research involved 

seven teams of 30 developers in five countries, across four continents and 11 
time zones. In its first year, the project used Object-Oriented Analysis and 
Design; most use cases were enumerated and packaged into functionally co-
hesive groups. The packages were then distributed among the teams for fur-
ther design and development. Because the use cases weren’t fully elaborated, 
the teams didn’t fully understand the dependencies among the various pack-
ages. As the design emerged and teams began to discover dependencies, ad 
hoc communication ensued between teams whose work depended on each 
other. New dependencies arose such that one team required a partial defini-
tion of another team’s object model, sometimes at a later date. Teams didn’t 
adequately investigate task dependencies that arose from systemic properties 
such as memory footprint and performance budgets, leading to duplicated 
work effort, conflicting solutions from other teams, and integration problems 
requiring rework. Coordinating and controlling work products across depen-
dent teams became challenging, and certain teams faced design and devel-
opment tasks that weren’t commensurate with their skill set. 

The project was undertaken from scratch in its second year using architec-
ture-centric methods. It involved a more upfront effort focused primarily on 
systemic quality attributes improving the general understanding of depen-
dencies across components that went beyond functional dependencies. As 
illustrated in figure 3 in the main article, the system’s structure was primarily 
driven by quality attributes. The top-level system was initially assigned re-
sponsibilities embodied in the use cases. As the top-level system was decom-
posed, its responsibilities were distributed across newly created components. 
This gave a better understanding of dependencies (both functional and sys-
temic) across components, which were then considered when distributing the 
work across teams, resulting in significantly improved coordination and con-
trol of work products across dependent teams.
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Figure 1. Object-oriented analysis and design artifacts showing (a) use cases, (b) the business domain model,  
(c) system interfaces, (d) business interfaces, (e) system components, and (f) business components. (The figure  
uses UML notation.)
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criticality, and coverage.3,9 A use case is architec-
turally significant if it

poses technical risks such as resource conten-
tion or performance;
is business critical, capturing the system’s es-
sence; or
exercises most of the system.

Although the business-critical use cases might 
be clear at the beginning of elaboration, identify-
ing those that pose a technical risk or that exer-
cise most of the system can be difficult. Not all use 
cases are fully understood until the end of elabora-
tion, and the system exists only as an evolutionary 
prototype.

Because it might be hard to express certain qual-
ity attribute requirements as use cases, RUP also 
maintains a supplementary specification document 
for such requirements. In addition to the architec-
turally significant use cases, this document’s qual-
ity attribute requirements also guide the architec-
tural efforts. In practice, RUP offers no guidance 

■

■

■

on representing quality attribute requirements. The 
supplementary specification document can become 
unwieldy, acting as a sink for every conceivable 
quality attribute requirement that might apply to 
the system under consideration. 

Discussing quality concerns  
with stakeholders

The SEI has been using quality attribute scenar-
ios in their architecture-centric methods to better 
elicit and represent quality attribute requirements 
observed in practice. A quality attribute scenario 
is a quality attribute specific requirement with six 
parts: the stimulus, its source, the environment, the 
artifact, the response, and the response measure.2 
It provides an operational definition for a quality 
attribute. For example, it’s meaningless to say that 
a system is modifiable. Every system is modifiable 
with respect to one set of changes and not modifi-
able with respect to another. It’s more meaningful 
to cast the requirement as a scenario, such as 

A developer wishes to add an input field to 
the UI code at design time; modification is 
made with no side effect in three hours. 

These scenarios can help structure the supplemen-
tal requirements of a system under development us-
ing OOAD.

During one step of the ATAM,2 the evaluators 
ask the system’s stakeholders to construct a utility 
tree. The utility tree has as its leaves a collection of 
quality attribute scenarios. However, what’s more 
relevant for this discussion is that its second and 
third levels are, respectively, a collection of quality 
attributes and their concerns (subattributes in the 
usage of ISO 9126). During the ATAM evaluation, 
the stakeholders are encouraged to use their own 
language for quality attributes. Thus, the utility 
trees that SEI collected during ATAM evaluations 
became a good resource for studying the language 
stakeholders used to describe quality attributes. 

We examined the utility tree data from 24 dif-
ferent SEI-led evaluations from 1999 to 2007. 
These evaluations, conducted for commercial and 
government organizations, range from avionics to 
transportation to combat systems. The data has 
1,072 scenarios in total. We looked at trends in the 
quality attributes and quality attribute concerns, 
looking for matches and mismatches between 
stakeholders’ language, the quality attributes that 
concern them, and the existing guidance for col-
lecting and specifying quality attributes.

Table 1 shows the 20 most common quality 
attributes (out of 49 attributes) in our data. The 

Table 1
The most common quality attributes  

according to the SEI-led ATAM evaluations.
Quality attribute Distribution (%)

Modifiability 14.1

Performance 13.6

Usability 11.4

Maintainability 8.5

Interoperability 7.8

Security 7.3

Configurability 6.9

Availability 6.8

Reliability 5.7

Scalability 3.2

Testability 2.6

Affordability 2.0

Reusability 1.9

Integrability 1.9

Safety 1.1

User data management 1.0

Portability 0.8

Assurance 0.8

Product line 0.8

Net-centric operation 0.5
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distribution percentage represents the number of 
times the concept is expressed as a top-level quality 
attribute, divided by the total number of scenarios. 
To understand the true nature of stakeholder con-
cerns, we also aggregated the quality attribute sce-
narios by their specified quality attribute concern 
level as opposed to the quality attributes reported 
in table 1. Each quality attribute in our data has 
between two and about a dozen concerns. Table 2 
lists the top 20 out of 140 concerns.

Many of the top 20 quality attributes or con-
cerns don’t appear in the same fashion in common 
taxonomies. For example, ISO 9126 defines secu-
rity as a subattribute of functionality: “The capabil-
ity of the software product to protect information 
and data so that unauthorized persons or systems 
cannot read or modify them and authorized per-
sons or systems are not denied access to them.” 
This is clearly a functional concern. However, other 
security concerns must also be captured for require-
ments to provide clear guidance for design. In our 
data, security is a top-level quality attribute with 16 
concerns or subattributes (see table 3). Although au-
thentication and access control (as described in ISO 
9126) made up 27 percent of the quality attribute 
concerns in our data, there were several other con-
cerns such as data integrity and malicious code. We 
observe similar differences with the Furps+ scheme 
as well.10 (Furps+ stands for functionality, usability, 
reliability, performance, and supportability, and the 
+ indicates other possible attributes.)

Without the corresponding quality attribute sce-
narios, ambiguities are inevitable, and these catego-
ries can easily become misleading, especially when 
communicating with stakeholders. As the “Dia-
logue with a Stakeholder” sidebar demonstrates, 
stakeholders have their own meaning for quality 
attribute concerns such as flexibility. Although the 
sidebar is anecdotal, it is representative of our data. 
In our data, flexibility is a concern of several quality 
attributes—namely interoperability, configurability, 
and extensibility. To infer the quality concern un-
der such circumstances, you must examine the sce-
nario. About half of these flexibility scenarios refer 
to changing the software, and the rest refer to the 
software’s ability to cover several usage conditions. 
However, we collected these ambiguous classifica-
tions from stakeholders during ATAM evaluations. 
Our data doesn’t distinguish between stakeholders 
who have investigated various standardized taxon-
omies and those who haven’t. 

We observed that stakeholders’ descriptions of 
quality attributes didn’t follow any pattern relative 
to various standard descriptions of quality attri-
butes. When specifying quality attributes, it’s bet-

ter to elicit the concern supported by the quality 
attribute scenario description than to go down a 
list of classifications, which might not cover all 
quality issues.

Building quality  
into software projects

Returning to the example of the company that 
wants to build a software system to monitor a 
building’s internal functions, you might note that 
the forces that most significantly impact its archi-
tecture are its business goals. The company also 
would have to consider different geographic mar-
kets’ languages, cultures, and regulations, and they 
would have to integrate field systems from different 
manufacturers into the product to meet the value-
added resellers’ needs. The company would have to 
make trade-offs and perhaps scale back if they can’t 
afford the business goals’ inherent risks. (We use 
the term business goals differently from its use in 
the business modeling context.) You can use busi-

Table 2
The most common quality attribute concerns  
according to the SEI-led ATAM evaluations

Quality attribute Quality attribute concern Distribution (%)

Modifiability New/revised functionality/components 6.4

Usability Operability 4.1

Modifiability Upgrade/add hardware components 3.9

Performance Performance response time/deadline 3.6

Performance Performance latency 3.2

Modifiability Portable to other platforms 3.1

Interoperability Operate intraservice (for example,  
ship-to-ship)

2.8

Usability Usability ease of operation: can do within 
a time limit

2.7

Performance Throughput 2.1

Performance Resource utilization 1.9

Availability Failure recovery/containment 1.9

Configurability Flexibility (range of operation scenarios) 1.7

Availability Graceful degradation 1.6

Interoperability Compliance to standards/protocols 1.5

Affordability Affordability of various decisions 1.5

Modifiability Replace COTS 1.4

Performance Real time 1.4

Availability Fault tolerance 1.3

Configurability Discovery (new configuration) 1.3

Security Authentication 1.3
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ness modeling to engineer new business processes 
or reengineer existing ones. Recent extensions to 
the RUP provide support for business modeling.11

SEI’s architecture-centric methods use business 
goals to elicit their associated quality attribute sce-
narios, which ADD then uses to create a software 

architecture. Stakeholders provide key input when 
eliciting quality attribute scenarios, but not all 
stakeholders participate in architecting the system. 
Table 4 shows the business goals and subgoals and 
their associated quality attributes, which the stake-
holders use to elicit quality attribute requirements 
for the building automation system.

Often, fewer than a dozen architecturally signif-
icant requirements drive or shape the architecture2 
as opposed to the hundreds of functional require-
ments. So, when it comes to understanding qual-
ity attributes, coverage is most critical. Organizing 
quality attribute scenarios into a utility tree pro-
vides significant coverage of the quality attribute 
requirements in a short amount of time. Figure 2 
shows a portion of the utility tree for the build-
ing-automation system that systematically fleshes 
out the modifiability and performance quality at-
tributes into concrete quality attribute scenarios. 
The quality attribute concerns trace back to table 
4’s business subgoals.

The ADD approach to defining software ar-
chitecture bases the design process on the system’s 
quality attribute requirements. ADD helps design-
ers understand quality attribute trade-offs early in 
the design process. The method takes the scenarios 
(such as those in figure 2) and prioritizes them be-
fore the design process can begin. In the prioritiza-
tion tuple next to the quality attribute scenario, the 
letters represent priorities that are high, medium, 
or low. The tuple’s first letter is the priority that the 
business stakeholders generated to represent the 
quality attribute’s business value. The second letter 
is the priority that the technical stakeholders gener-
ated to represent the effort required to achieve the 
quality attribute. For instance, (H, H) means that 
the quality attribute has high business value and 
would require considerable effort to achieve. ADD 
considers the quality attributes in the following or-
der: (H, H), (H, M), (H, L), (M, H), (M, M), (M, 
L), (L, H), (L, M), and (L, L). So, the final architec-
ture created through such a process also reflects this 
priority order. Notice the distinction between the 
architecture in figure 3 and the one derived from an 
OOAD application in figures 1e and 1f.

ADD starts with the top-level system (figure 3a) 
and decomposes it into components (figure 3b–
3d), applying architectural tactics2 corresponding 
to the quality attributes. Relevant tactics are ap-
plied based on the priorities shown in the utility 
tree in figure 2.

Figure 3b shows the application of the modifi-
ability tactics to limit the impact of change and 
minimize the number of dependencies on the sys-
tem responsible for integrating new field systems. 

Table 3

The distribution of security-related  
quality attribute concerns according  

to the SEI-led ATAM evaluations
Quality attribute concern Distribution (%)

Authentication 16.9

Multilevel security 13.0

Access control 10.4

Ability to change security policy 9.1

Data integrity 6.5

Intrusion detection 6.5

Confidentiality 5.2

Data identification 5.2

Data protection 5.2

Blocking 5.2

Sanitization 5.2

Accountability 3.9

Service disruption 2.6

Malicious code 2.6

Denial of service 1.3

Migration of security in later release 1.3

Table 4
Business goals used  

for eliciting quality attribute scenarios
Business goal Goal refinement Quality attribute

Expand sales channels 
through value-added 
resellers

Support field systems from  
different manufacturers

Modifiability

Support conversions of  
nonstandard units used by  
the different field systems

Modifiability

Enter new and emerging 
geographic markets

Support several international  
languages

Modifiability

Support regulations that require 
life-critical systems, such as fire 
alarms, to operate within specific 
latency constraints

Performance
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We introduce an adapter for each field system 
(anticipation of changes tactic) with each adapter 
exposing a standard interface (maintain existing 
interface tactic). We also introduce a virtual field 
system to further limit the ripple effect when re-
moving or adding field systems (introducing an in-
termediary tactic).

Figure 3c illustrates the application of the per-
formance tactic (concurrency) to support criti-
cal systems so they operate within specific latency 
constraints. We separate the parts responsible for 
evaluating rules and generating alarms for life-
threatening situations into logic-and-reaction and 
alarm modules. We can then move these modules to 
a dedicated execution node, which reduces latency, 
and can further enhance its performance by intro-
ducing multithreading in these modules.

Figure 3d shows the application of the modifi-
ability tactic (anticipation of changes). We create a 
separate presentation module to support several in-
ternational languages.

The only scenario from figure 2 that we don’t 
appear to address is the one dealing with converting 
nonstandard units that various devices use. We use 
the adapters in figure 3b to do the conversions into 
standard units (introducing an intermediary tactic).

B usiness goals and their associated quality 
attribute requirements strongly influence 
a system’s architecture. However, elicit-

ing and representing the quality attribute informa-
tion hasn’t yet become a routine part of practice. 
Although taxonomies are helpful, without quality 
attribute scenarios it’s often impossible to infer a 
quality attribute’s essence, especially where a qual-
ity attribute scenario covers multiple quality attri-
butes.  Integrating architecture-centric methods, 
such as ADD, into mainstream software develop-
ment methodologies produces significant bene-
fits.12,13 Although it’s not yet routine, some orga-
nizations are taking steps forward. Organizations 
such as Pitney Bowes have defined company-spe-
cific usage of quality attributes and their concerns, 
resulting in less confusion about the meaning of 
quality attribute descriptions among the stake-
holders.14 Furthermore, Ericsson, Sandia National 
Laboratories, and Samsung SDS have effectively 
incorporated quality attribute information into ex-
isting methods.15
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Figure 3. Attribute-
driven design showing 
(a) the top-level system 
as a starting point 
and its decomposition 
through applying  
tactics to support 
(b) adding new field 
systems, (c) latency 
constraints, and  
(d) internationalization.
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